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For a plane acoustic wave, potential and kinetic energy are equal (Lighthill (1978), p. 13). We can utilize
this fact to leverage the expression for acoustic kinetic energy averaged across an acoustic impulse

I =
ρ0c

τ

∫ τ

0

u(t)2dt (1)

where I is acoustic intensity (Watts per square meter), ρ0 is ambient air density, c is the speed of sound,
τ is the signal duration, and u(t) is particle velocity (see Lighthill (1978), page 13, Krasnov et al. (2007),
equation 2). We can calculate the particle velocity in an acoustic plane wave via Equation 17 in Lighthill
(1978):

p− p0 = ρ0cu(t) (2)

where p is the over/underpressure and p0 is ambient pressure. For a sinusoidal disturbance, then, the particle
velocity fluctuates as

u(t) = u sinωt (3)

Given all this, we can calculate the average acoustic intensity across one cycle of the wave:

I =
1

2
ρ0cu

2 (4)

Substituting for u in Equation 2 and some manipulation gives

I =
1

2

(p− p0)2

cρ0
(5)

or, in terms of root mean square amplitudes (Jensen et al., 2011)

I =
p2rms
ρ0c

(6)

Now we have calculated the energy flux per cycle of our sinusoidal source: this is the physics definition of
“intensity”. Multiplying by the square of frequency ω of the wave will give energy flux per unit time:

Ẽ =
1

2

ω2

cρ0
(p− p0)2 (7)

which is what I am after. A similar form can be seen for seismic energy flux as well (Shearer (2009), Equation
6.15)

Ẽ =
1

2
cρ0u

2ω2 (8)

Thus, Equation 7 is physically consistent and alluded to in a couple of sources. Energy scales with frequency,
so the higher the frequency, the higher the energy. Obviously a higher pressure amplitude gives a higher
energy. Furthermore, amplitudes of waves in two different media are proportional to the ratios of the square
roots of their impedances:

√
ρ0c. Thus, a lower density for a given pressure actually implies a more energetic

wave. This follows from kinetic considerations of course.
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At first, glance, Equation 1 of Barry et al. (1966) appears to give a different result than using Equation
7 in this text. Their equation

P =
ρ0c

3

2γ2

(pmax − p0
p0

)
(9)

considers power density P , adiabatic index γ, maximum overpressure pmax and ambient pressure p0 per unit
wavelength. This is related to Rayleigh (1894), Section 245, Equation 10:

W =
1

2
ρ0c

3u2maxt (10)

Taking the time derivative of the above and dividing by the square of wavelength ω
c yields

Ẽ =
1

2
ω2ρ0cu

2 (11)

identical to seismic energy flux (Equation 8).
Thus, the formula for the amplitude change of a pressure wave with overpressure p0 at ρ0 and c0 and p1

at ρ1 and c1 is

p1 = p0

√
c1ρ1
c0ρ0

(12)

in other words, the square root of the reciprocal of their acoustic impedances. The practical consequence
for this is the following: a nondissipative, harmonic acoustic plane wave will have approximately 10x lower
pressure amplitude in the middle stratosphere compared to the same wave measured at sea level. This is
primarily due to the approximately 2 orders of magnitude lower air density in the stratosphere compared
with the surface.
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